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Abstract

Several functions have been chosen in order to approximate fold pro®le geometry. Some of them are valid mainly for
alloclinal folds (interlimb angle>0), whereas others are mainly valid for isoclinal folds (interlimb angle=0). In all cases, a fold
pro®le can be characterised by an aspect ratio ( y0/x0) between the height and the width of a limb (fold amplitude), and a shape

parameter characteristic of the considered function. The shape parameters have been mutually linked through the area beneath
the fold pro®le. The geometrical analysis enables a graphical classi®cation based on a shape±amplitude diagram in which the
most common types of folded surfaces are represented: cuspate, chevron, sinusoidal, parabolic, elliptic and box folds. Any of the

shape parameters can be used as x-axis of the diagram in order to approximate the geometries commonly exhibited by natural
folds. In the diagram presented in this paper two shape parameters have been combined: the exponent n of a power function for
alloclinal folds, and a parameter C/y0, de®ned from a function composed of an elliptic part and a line segment of length C for
isoclinal folds. In order to show the suitability of the classi®cation method, it has been applied to some examples of ®nite-

element, experimental and natural folds. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The determination of the strain distribution in
folded layers is seldom possible at present. As a conse-
quence, the precise knowledge of the geometry of folds
is in many cases the only tool available to analyse the
origin and evolution of these structures. To systematise
the fold geometry depends on the availability of ade-
quate methods for the geometrical description of folds.
To date this description has focused on two aspects:
the geometry of single folded surfaces and the geome-
try of folded layers.

The fold classi®cation proposed by Ramsay (1967,
pp. 359±372) is a powerful tool to analyse in detail the
pro®le geometry of folded layers. Some problems of
this classi®cation were analysed by Hudleston (1973)
and complementary methods to classify large data sets

of folds were developed by Bastida (1993) and Lisle
(1997).

Several parameters have been used to characterise
the morphology of single folded surfaces. A classical
parameter to describe the fold tightness is the interlimb
angle (f ), which was used by Fleuty (1964) to di�eren-
tiate the following types of folds: gentle
(180 > f > 1208), open (120rf > 708), close
(70rf > 308), tight (30rf > 08), isoclinal (f � 08),
and elasticas (f<08). Because the shape of the folded
surface in cross-section also depends on the changes in
curvature, Ramsay (1967) de®ned two parameters: P1,
which is the extent of the fold limbs with respect to
that of the hinge zone; and P2, which is obtained by
expressing the maximum curvature of the fold surface
as a ratio of the unit curvature of the circle drawn
with the distance between the in¯ection points as a
diameter.

Another approach to the geometrical analysis of
the folded surfaces in cross-section is based on
Fourier analysis, each limb being characterised by
several coe�cients of a Fourier sine series (Stabler,
1968; Hudleston, 1973; Ramsay and Huber, 1987,
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pp. 314±316; Stowe, 1988). The advantage of this
method is that a limb is approximated by a mathemat-
ical function; nevertheless, this function is very compli-
cated, particularly when a large number of coe�cients
are involved (Stowe, 1988). In addition, the use of
many coe�cients is inconvenient for classi®cation pur-
poses. Hudleston (1973) used two Fourier coe�cients
(b1 and b3) to classify the pro®le shape of folded sur-
faces through a graphical representation of b1 vs b3.
Thus, this author distinguished six types of standard
shapes, from type A (box folds) to F (chevron folds),
and ®ve standard amplitudes (1±5). A quick alternative
to the measurements and calculations involved in this
method of classi®cation is the visual harmonic analysis
(Hudleston, 1973), that allows the determination of b1
and b3 by comparing the fold pro®le with 30 idealised
fold forms with di�erent shapes (A±F) and amplitudes
(1±5). Unfortunately, the use of two Fourier coe�-
cients gives only a rough approximation to the func-
tions that describe fold morphologies (Stowe, 1988).

Twiss (1988) proposed a classi®cation of symmetric
folded surfaces based on the determination of three
fold style parameters. A problem of this classi®cation
is that the results of its application cannot be fully rep-
resented in two-dimensional diagrams. Moreover, the
classi®cation of asymmetric folds requires six par-
ameters, and this makes its use di�cult. On the other
hand, this classi®cation does not provide an analytical
expression of the folded surface pro®le.

The aim of this paper is to present a geometrical

analysis of folded surface pro®les based on their
approximation by simple functions, and plot the
results on a graph which re¯ects and discriminates
accurately the main geometrical features of the pro®les
and permits their classi®cation.

2. Basis of the analysis

The geometrical analysis of a folded surface pro®le
requires the selection of a reference system. The chosen
system is formed by the tangent to the pro®le curve at
the hinge point (x-axis) and its normal through this
point ( y-axis) (Fig. 1a). In the case of folds with a
double hinge, the point equidistant from both hinges
(closure point of Twiss, 1988) is chosen as co-ordinate
origin (Fig. 1b), whereas in the case of a fold with an
arc of constant curvature and without a de®ned hinge
point, the middle point of this arc is considered as ori-
gin (Fig. 1c). In chevron and cuspate folds the y-axis is
the bisector line of the interlimb or cusp angle, and the
x-axis is perpendicular to the y-axis through the vertex
or cusp point, respectively (Fig. 1d and e).

The unit considered for the analysis of folded sur-
faces is the fold limb pro®le, de®ned as the portion of
the pro®le between the co-ordinate origin and an adja-
cent in¯ection point (Fig. 1a) (quarter wavelength unit
of Hudleston, 1973). This de®nition is problematic in
those folds in which the in¯ection point is not de®ned,
such as (1) folds with a line segment in the limb, (2)

Fig. 1. Reference system and geometrical elements used in this study. (a) General case: H, hinge point; I, in¯ection point; A, area beneath the

limb pro®le; b, maximum dip. (b) Double hinge fold. (c) Fold with a circular arc. (d) Chevron fold. (e) Cuspate fold. (f) Fold with a straight seg-

ment in the limb.
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chevron folds, and (3) lobe-and-cusp folds. In cases (1)
and (2), the limit between adjacent folds is taken in the
middle point of the straight sector (Fig. 1d and f). In
case (3), the arc between the cusp point and an adja-
cent hinge is taken as a limb that is common for the
cuspate fold and the adjacent arc fold. Hence, in this
case a single limb may be analysed twice with di�erent
reference axes, one for each type of fold (Fig. 1e).

Since it is di�cult to ®nd a single simple function
which approximates adequately all the common fold
morphologies found in rocks, it is convenient to separ-
ate folds into two categories: alloclinal folds (interlimb
angle>08) and isoclinal folds (interlimb angle=08).
Folds with interlimb angle < 08 are uncommon in
deformed rocks and they are not analysed in this
study.

2.1. Alloclinal folds

The geometry of a limb of an alloclinal folded sur-

face pro®le may be approximated by several types of
functions. The simplest is the power function given by:

y

y0
�
�

x

x0

�n

�1�

de®ned within the interval �0,x0�; n, x0 and y0 are posi-
tive numbers. The meaning of x0 and y0 is shown in
Fig. 1(a), and x0 is introduced in Eq. (1) to avoid the
e�ect of the scale factor in the classi®cation. In order
to represent graphically a complete fold (the two adja-
cent limbs of an antiform or synform), Eq. (1) has
been modi®ed to:

y
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considered within the interval �ÿx0,x0�. The ratio y0/x0
characterises the fold amplitude, whereas n character-
ises the fold shape. Fig. 2 illustrates the fold mor-
phologies obtained for several values of n and y0/x0.

Fig. 2. Fold morphology corresponding to power functions with di�erent values of y0/x0 and the exponent n. For a better visualisation of the

folded pro®les the origin of co-ordinates has been located in the fold core.
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The following values of n characterise some distinctive
fold shapes: (1) n<1, cuspate folds; (2) n � 1, chevron
folds; (3) n � 2=�pÿ 2�11:75, ®t of the sinusoidal
folds; (4) n � 2, parabolic folds; (5) n > 2, double
hinge folds (for n values close to 2, this morphology is
visually imperceptible); (6) n41, box folds.

Another simple function that approximates the geo-
metry of a limb of a folded surface pro®le is given by

y � y0

�
1ÿ cos

�
p
2

x

x0

��m
�3�

within the interval �0,p=2�. The meaning of x0 and y0 is
indicated in Fig. 1(a), and m is a positive number. In

this case, for m<0:56, we have cuspate folds; for
m10:56, chevron folds; for m � 1 sinusoidal folds; for
m > 1, double hinge folds (visually imperceptible for m
values close to 1); and for m41, box folds. This func-
tion can be helpful in some cases, but it is more com-
plicated than Eq. (1).

2.2. Isoclinal folds

The power functions do not generate proper iso-
clinal forms (except when n41) and isoclinal rounded
folds (e.g. semicircular or semi-elliptical folds) are only
roughly approximated by these functions. Hence,
another type of function must be considered to ®t iso-
clinal folds. A limb pro®le of these folds can be ap-
proximated by the expressions:

y � b

0@1ÿ ���������������
1ÿ x2

x2
0

s 1A within �0,x0� �4a�

x � x0 within bRyRy0 �4b�

where y0 � b� C (Fig. 3).
Eq. (4a) is a quarter of an ellipse with semi-axes x0

(on the x-axis) and b (on the y-axis), and centred at
the point �0,b�; Eq. (4b) represents a line segment of
length C which is a prolongation of the ellipse arc
(Fig. 3). Fig. 4 shows some isoclinal fold morphologies
described by Eqs. (4a) and (4b) (within the interval
�ÿx0,x0� to represent complete folds), for x0 � 1 and
several values of C/y0 and y0. For y0 � b (or C=y0 � 0)

Fig. 3. Geometrical elements of an isoclinal fold.

Fig. 4. Fold morphologies corresponding to Eqs. (4a) and (4b) for di�erent values of y0/x0 and C. For a better visualisation of the folded pro®les

the origin of co-ordinates has been located in the fold core.
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folds are elliptical; for x0<b (or C=y0<1ÿ x0=y0) folds
have a single hinge point; for x0 � b, folds contain a
semi-circle; for x0 > b, the shape is that of double
hinge folds; for b � 0 (or C=y0 � 1), the shape is that
of box folds.

Another function that can be used to analyse fold
geometry is

xp

x
p
0

� y p

y
p
0

� 1: �5�

This function was used by Lisle (1988) to approximate
the form of coarse clastic sediment particles. For
p � 2, this function describes an ellipse, whereas for
p<2, it de®nes a family of curves named subellipses,
and for p > 2, it represents curves named superellipses
(Lisle, 1988, ®g. 1). This function is suitable for both
alloclinal (p<2) and isoclinal folds (pr2). The maxi-
mum of Eq. (5) corresponds to the point �0,y0�, and
for p<1, we have cuspate folds; for p � 1, chevron
folds; for p � 2, elliptic folds; and for p41, box
folds. Eq. (5) ®ts fold shape better than Eqs. (1) and
(3) or Eqs. (4a) and (4b) in some cases; nevertheless, it
is more di�cult to handle for analytical purposes than
Eqs. (1), (4a) and (4b).

3. Fitting fold pro®les to the theoretical functions

Once the functions that can be used to describe the
fold pro®le geometry have been de®ned, it is necessary
to establish ®tting methods to approximate a natural
fold by Eqs. (1), (3), (4a) and (4b) and/or Eq. (5). In

some cases, the measurements necessary to ®t a natural
fold to one of the functions can be taken in the ®eld;
however, it is convenient to utilise photographs of the
fold pro®le made with the optical axis of the camera
perpendicular to the pro®le plane. The pro®le line of
each limb and the corresponding reference frame can
be drawn after these photographs, and x0 and y0 can
be measured. In the case of isoclinal folds, the C value
can also be measured directly, but the measurements
commonly involve a large error. For this reason the
parameter C should be always obtained using a best-®t
method.

Two methods will be described to ®t the pro®le line
to one of the proposed functions: the ®tting method
by area balance, and the ®tting method using the
middle point. Since the y0/x0 value is a characteristic
parameter of folds, in both methods we must search
for a best-®t curve with the same y0/x0 value as the
natural fold pro®le curve.

3.1. Fitting method by area balance

Balancing the area beneath the curves is an accurate
technique to approximate the pro®le of a natural fold
to any of the proposed functions. This ®tting method
requires the determination of the area A beneath the
pro®le curve of a particular natural fold (see Fig. 1a).
This determination can be made by a rule of numerical
integration, by cutting-out the area within the fold
pro®le and weighing it in a chemical balance (Cooper
et al., 1983), or by a computer program which permits
area estimation (e.g. CANVAS

2). The next step is to

Fig. 5. Correlation scales for the shape parameters n, m, C/y0 and p involved in Eqs. (1), (3), (4a), (4b) and (5), respectively. The basis for the

correlation is the normalised area (a � 2A=x 0y0). Values of the shape parameters corresponding to chevron, and sine, parabola and ellipse ®ts

have been correlated by vertical lines; the points on them indicate the perfect ®t of the corresponding shapes.
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®nd the ®tting function or functions whose area equals
the area of the natural fold analysed. In the case of
alloclinal folds, when Eq. (1) is used, the integration of
this function allows us to determine the n value of the
®tting function; this value is given by:

n � A

x0y0 ÿ A
: �6�

In the case of isoclinal folds, the ®t by functions of
the type (4) should be made by determining the par-
ameter C, which can be derived from the formula of
the area beneath the curve of Eqs. (4a) and (4b), and
is given by

C � 4Aÿ px0y0
x0�4ÿ p� �7�

where x0 and y0 � b� C can be measured on the natu-
ral fold (Fig. 3).

A graphical solution to obtain the value of the re-
spective fold shape parameter, m or p, using Eq. (3) or
Eq. (5), is shown in Fig. 5. In this ®gure all the fold
shape parameters (n, C/y0, m and p ) have been
included and mutually correlated through the area. In
order to avoid the fold size e�ect in the determination
of the parameters, a normalised area, de®ned as
a � 2A=x0y0, and a normalised value of C (C/y0) have
been used in this ®gure. Hence, a ®t by the area bal-
ance method permits the determination, from the nor-
malised area below a natural fold pro®le, of the
corresponding value of n, m, p and C/y0, and there-

fore, of all the particular functions that can be used to
describe the fold geometry.

The forms obtained from Eqs. (1), (3) and (5) for
two particular cases of alloclinal folds, and from Eqs.
(4a), (4b) and (5) for one particular case of isoclinal
fold are shown in Fig. 6. Fig. 6(a) and (b) illustrate
three pro®les whose normalised area is that of the
standard sinusoidal (a11:27) and parabolic (a11:33)
shapes, respectively. Eq. (3) gives the perfect sinusoidal
shape (Fig. 6a), whereas Eq. (1) gives the perfect para-
bolic shape (Fig. 6b). In both cases, Eqs. (1) and (3)
exhibit forms very close, whereas Eq. (5) gives forms
more separated from the standard shapes with ten-
dency towards the pointed arch shape, and hence, less
appropriate to ®t the common alloclinal folds. Fig.
6(c) shows two pro®les of isoclinal folds obtained from
Eqs. (4a), (4b) and (5) for a11:79; in this case, these
functions represent two possible choices to ®t isoclinal
folds.

The accuracy of the ®tting method by area balance
results from the fact that the natural fold pro®le curve
and the best-®t curve have the same y0/x0 value and
the same concavity sense between the hinge point and
the in¯ection point. Under these conditions, the devi-
ation between both curves gives rise to two equal
areas, one of them above the best-®t curve and another
below it. When a natural fold pro®le is approximated
by the best-®t function among Eqs. (1), (3), (4a), (4b)
and (5), these areas are in general small, and the two
curves are close. Inaccurate ®ts may result for some
uncommon fold forms, but in these cases, the error is

Fig. 6. Possible curves to ®t the natural fold pro®les represented by three points on the shape±amplitude diagram of Fig. 8: (a) point P, (b) point

Q and (c) point R. All the curves have the same amplitude (y0=x 0 � 2) and the normalised area is: (a) 1.27 (sine ®t), (b) 1.33 (parabola ®t) and

(c) 1.78.
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not due to the area-balance method, but to the in-
adequacy of the ®tting functions.

3.2. Middle point ®tting method

This method consists of ®nding a ®tting function
which passes through the point of the natural fold pro-
®le corresponding to x � x0=2. For instance, introdu-
cing this condition for x in the power Eq. (1) and
solving it for n, we obtain

n � log y0 ÿ log yM

log 2
�8�

where yM is the value of Eq. (1) for x � x0=2. The n
value obtained enables us to de®ne the ®tting power
function.

For isoclinal folds, in the case of Eqs. (4a) and (4b),
the ®tting function that passes through the point
�x0=2,yM� of the natural fold is de®ned by a C value
given by:

C � y0 ÿ yM

1ÿ
���
3
p

2

: �9�

The ®tting method by coincidence of the functions
using their x-middle point is easy to apply and o�ers a
satisfactory approximation to the natural fold pro®les.

3.3. Degree of mis®t

The approximation of natural fold pro®les to theor-
etical functions involves a degree of mis®t that must
be evaluated in order to know the accuracy of the ®t-
ting methods.

If yi � f�xi � is the value of the ®tting function [Eqs.
(1), (3), (4a) and (4b) or Eq. (5)] for xi, and

�x1,z1�,�x2,z2�, . . . ,�xN,zN� are points of the natural
fold pro®le (Fig. 7a), the absolute rms error along the
y-axis is given by

ey �
�������������������������������
1

N

XN
i�1
�zi ÿ yi �2

vuut �10�

and the relative error expressed as a percentage is

ey,r � 100
ey
y0
: �11�

Similarly, if zi � g�xi � � f�x 0i � is the value of the func-
tion de®ned from the natural fold for xi and of the ®t-
ting function for x

0
i (Fig. 7b), the error along the x-

axis is given by

ex �
����������������������������������
1

N

XN
i�1
�x 0i ÿ xi �2

vuut �12�

where x
0
i � f ÿ1�zi �. The corresponding relative error

expressed as a percentage is

ex,r � 100
ex
x0
: �13�

From Eqs. (11) and (13), a total relative average error
can be de®ned as

�e r � �ex,r � ey,r�=2: �14�
The ®tting error a�ects several geometrical par-

ameters of the analysed fold. In the case of alloclinal
folds, one of these parameters is the maximum dip
(Fig. 1a), which, in general, is di�erent in the natural
fold pro®le and the ®tted curve. An absence of ®tting
error implies no error in the maximum dip; neverthe-
less, an absence of error in the maximum dip does not

Fig. 7. Distances used to measure the ®t error. (a) Along the y-axis. (b) Along the x-axis.
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imply that there is no ®tting error. It is not possible to
determine exactly the ®tting error by a single measure-
ment; however, the error in the maximum dip is a
good index of the ®tting error which is very easy to
obtain and also advantageous, since the maximum dip
is a useful parameter in the geometrical description of
folds. If b is the maximum dip measured on the fold
pro®le and b � is the maximum dip of the ®tted curve,
the relative error expressed as a percentage is given by

eA � 100�b� ÿ b�=b: �15�
b can be directly measured from the drawing of the
natural fold pro®le and b � can be easily computed
from the ®tting power function [Eq. (1)]. In fact, tan b
is given by

tan b � � y 0�x 0
� y0n=x0 �16�

where � y 0�x 0
is the derivative of Eq. (1) at x � x0.

The determination of the ®tting error permits deter-
mination of the best-®t function among the functions
considered [Eqs. (1), (3), (4a), (4b) and (5)].

Fig. 8. Shape±amplitude classi®cation diagram for folded surface pro®les.

Fig. 9. Fold limb morphologies given by the power Eq. (1) for sev-

eral n values (on the curves).
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4. Classi®cation of folded surface pro®les

Fitting folded surface pro®les with Eqs. (1), (3), (4a)
and (4b) or Eq. (5) permits a simple and accurate
graphical classi®cation suitable for the analysis of fold
sets (Fig. 8). The ratio y0/x0, which is a measurement
of the fold amplitude (or an aspect ratio), will be the
y-axis of the diagram. On the other hand, any of the
shape parameters considered in Fig. 5 can be used as
the x-axis. Nevertheless, the joint classi®cation of
alloclinal and isoclinal folds may require the combined
use of two shape parameters. This is the reason why in
the classi®cation diagram of Fig. 8, the parameters n
(alloclinal folds) and C/y0 (isoclinal folds) have been
chosen as the x-axis. Since the shape parameters are
mutually related through the normalised area (a ), this
is a fundamental magnitude of the diagram, and it has
also been incorporated in the x-axis on an arithmetic
scale. This scale is appropriate to classify folded sur-
faces, because it weights very well the fold shape vari-
ation. Fig. 9 shows fold shapes for several n values; it
appears that increasing n leads to changes in fold

shape which are very di�erent for low and high n
values. For instance, an n change from 1 to 2 implies a
variation in shape much greater than an n change
from 20 to 21. Moreover, Fig. 9 shows that a close
relationship occurs between changes in shape and
changes in area. According to this, the arithmetic scale
for a in the diagram in Fig. 8 represents adequately
the change in fold shape.

Several ®elds have been separated in the classi®-
cation diagram (Fig. 8) by lines that represent charac-
teristic fold shapes (chevron, sinusoidal, parabolic,
elliptic and box folds). A natural fold limb pro®le is
represented in the diagram by a point. In the ®eld
where n<3:66, each point corresponds to an alloclinal
fold with an n value that characterises the fold shape
and an amplitude y0/x0. In the ®eld where the scales
for n and C/y0 coexist, both isoclinal and alloclinal
folds with nr3:66 can be represented. Hence, each
point corresponds to two folds with the same normal-
ised area and amplitude y0/x0: an isoclinal fold charac-
terised by a C/y0 value, and an alloclinal fold
characterised by a speci®c n value. Nevertheless, one

Fig. 10. Classi®cation in the shape±amplitude diagram of fold pro®les corresponding to several ®nite-element models of progressive folding in

single layers. m/m0 is the viscosity ratio between the folded layer and its host. Dieterich and Carter (1969, Fig. 2), m/m0=42.1, * outer arc, w
inner arc. Hudleston and Stephansson (1973,Fig. 5B), m/m0=10, R outer arc, r inner arc. Ibid (Fig. 8A), m/m0=100, Q outer arc, q inner arc.

Ibid (Fig. 8B), m/m0=1000, + outer arc,$inner arc. Parrish et al. (1976, Fig. 9), equivalent m/m0=1, P outer arc, �w inner arc.
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of these forms will ®t the natural fold more closely.
The form selected (isoclinal or alloclinal) must be indi-
cated by a distinctive symbol. In general, this selection
is straightforward, since each natural fold, alloclinal or
isoclinal, will be better approximated by its respective
function [Eq. (1) in the case of alloclinal folds or Eqs.
(4a) and (4b) in the case of isoclinal folds]. If the selec-
tion is problematic, a method of error determination
can be applied to choose the best ®t.

In the isoclinal folds ®eld, elliptical folds occur
along the line C=y0 � 0. The intersection point
between C=y0 � 0 and y0=x0 � 1 represents semi-circu-
lar folds. All the other isoclinal folds have a straight
part and an elliptical part, and they can be plotted on
the ®eld for single hinge folds or on the ®eld for
double hinge folds. The folds plotted along the line
that separates these ®elds include a circle arc. This line
accomplishes the condition x0 � y0 ÿ C, which implies
that

C

y0
� 1ÿ x0

y0
: �17�

In Fig. 8, the shape parameters of Eqs. (1), (4a) and
(4b) have been represented in the x-axis, but other par-
ameters, such as those from Eqs. (3) and (5), can also
be used on the diagram. Substituting the parameter
represented along the x-axis does not involve changes
in the location of the points plotted on the diagram,
but it implies slight changes in the shape of the fold
represented by each single point. Therefore, if the
parameter represented on the x-axis is changed, the
points P, Q and R of Fig. 8 can represent any of the
respective shapes shown in Fig. 6.

5. Application of the fold classi®cation method

To classify a limb pro®le of a folded surface on the
shape±amplitude diagram (Fig. 8) we should follow
these steps:

1. From a photograph, trace the fold pro®le onto
transparent paper.

2. Locate the hinge and in¯ection points on the section
and construct the reference frame.

3. Decide whether the fold is alloclinal or isoclinal and
determine x0 and y0 on the drawing.

4. Use a ®tting method to ®nd the exponent n (allo-
clinal folds) or C/y0 (isoclinal folds). If the area ®t-
ting method is chosen, the area beneath the curve
(Fig. 1) must be measured; then, the n or C/y0 value
[or m or p values if Eq. (3) or Eq. (5) is chosen] can
be obtained by plotting the area on the diagram in
Fig. 5 or Fig. 8 as a normalised area (a � 2A=y0x0),
or by using Eq. (6) or Eq. (7) (only for n and C/y0).

If the middle point ®tting method is chosen, the
value yM for x � x0=2 must be measured and Eq.
(8) or Eq. (9) must be used to obtain n or C.

5. Plot n (or m or p ) and y0/x0 in the case of alloclinal
folds, or C/y0 (or p ) and y0/x0 in the case of iso-
clinal folds on the diagram in Fig. 8 (or on its
equivalent diagram for m or p ). A di�erent symbol
must be used for points corresponding to alloclinal
folds plotted within the isoclinal folds ®eld, or in
those cases in which two or more functions are used
in a single diagram.

6. Examples

The capabilities of the classi®cation method to
characterise the geometry of folded surfaces are shown
through its application to ®nite-element folds, exper-
imental folds and natural folds.

6.1. Finite-element folds

Several folds obtained by ®nite element analysis
have been represented in the classi®cation diagram
(Fig. 10) using the middle point ®t method. These
folds correspond to di�erent sequences of progressive
folding of a competent single layer embedded in an
incompetent host. Most of the sequences were devel-
oped assuming Newtonian viscous models with an
initial con®guration corresponding to Biot's dominant
wavelength and di�erent viscosity contrasts (Dieterich
and Carter, 1969, ®g. 2; Hudleston and Stephansson,
1973, ®gs. 5B, 8A and B); the evolution of these
models involves layer shortening, buckle shortening
and ¯attening. Another model (Parrish et al., 1976, ®g.
9) simulates the progressive folding of a quartzite layer
embedded in marble, both with power constitutive
¯ow law; in this model, buckling occurs until 20% of
shortening is reached, and after that, ¯attening plays
the dominant role.

The points corresponding to a single sequence
describe approximate straight paths on the diagram. In
the models with dominant buckle shortening, or with
layer shortening and buckle shortening (Dieterich and
Carter, 1969; Hudleston and Stephansson, 1973), an
increase of n occurs when y0/x0 increases, so that an
approximate linear relationship exists between the nor-
malised area and y0/x0. In these models, the paths fol-
lowed by the inner arcs exhibit a greater slope than
the paths of the outer arcs. Moreover, the paths of the
outer arcs are very close, suggesting that the shape
evolution of these folded surfaces is independent of the
viscosity contrast. More di�erences are observed
between the paths of the inner arcs, for which an
increase in the path slope seems to be related to a
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decrease in the viscosity contrast. In the model where
¯attening superposed on previous buckling dominates,
the paths are approximately vertical, so that y0/x0
increases keeping constant the n value.

6.2. Experimental folds

The folds classi®ed have been taken from Ramsay
and Huber (1987, ®g. 19.5, folds E, F, G, f, and g, in
stages 1±4) and correspond to a single layer buckling
experiment (competent plasticine layer embedded in a
less competent plasticine matrix). The classi®cation
results are shown in Fig. 11 and can be compared with
those obtained by Ramsay and Huber (1987, ®g.
19.24) using Hudleston's method. In spite of the high
dispersion of points on the diagram, several features
can be observed. The n-mean values for the ®rst stage
are located between the sinusoidal and parabolic folds,
but as the amplitude increases, the folds progress
toward more rounded shapes (sinusoidal 4 parabolic
4 elliptic 4 isoclinal). On the other hand, with the
increase in amplitude, the mean value of the amplitude
for the inner arcs increases in relation to that for the
outer arcs.

6.3. Natural folds

Two examples of natural folds have been classi®ed.

The ®rst one is a set of microscopic folds developed in
a single layer of siltstone embedded in a much less
competent slate matrix (from Ramsay and Huber,
1987, ®g. 19.11). The second one is a multilayer of
metasandstones and pelites (from Ramsay and Huber,
1987, ®g. 15.15). The results of the classi®cation are
shown in Fig. 12.

In the case of the single layer, the points that rep-
resent inner arcs are separated from the points that
represent outer arcs. Both sets of points exhibit
increasing trends, with a higher slope for the inner arcs
trend. On the other hand, in both sets the overturned
limbs have higher values of n (or C/y0) and y0/x0 than
the normal limbs, as a result of the fold asymmetry.

In the multilayer, the points pattern is quite di�er-
ent. In the low amplitude folds, n values range from
1.5 to 2.5, whereas in the high amplitude folds, a trend
toward the chevron shape is observed.

6.4. Comparison of results

The aim of this paper is not to gain insight into fold
mechanics; nevertheless, the comparison of Figs. 10±12
is interesting in that respect. In all the single layer
folds considered, except for those of Parrish et al.
(1976) with equivalent m=m0 � 1 (Fig. 10), an increase
in amplitude involves an increase in n value with a
nearly linear trend. In the ®nite-element and exper-

Fig. 11. Classi®cation on the shape±amplitude diagram of the experimental buckling folds produced by Ramsay and Huber (1987, ®g. 19.5) in a

single layer of competent plasticine embedded in a matrix of soft plasticine.
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imental folds, the trend re¯ects the fold geometry vari-
ation as fold ampli®es, whereas in the natural folds,
the trend results from the presence of folds with di�er-
ent evolution degrees in the photograph used.
Nevertheless, it can be assumed that these evolution
degrees are comparable to the progressive changes in
shape of a single fold. Taking into account this
assumption and that the materials simulated in the
®nite-element experiments of Dieterich and Carter
(1969) and Hudleston and Stephansson (1973) have a
linear rheological law, the similarity in shape of the
experimental and natural folds (Figs. 11 and 12)
suggests that these folds may have developed in layers

with approximately linear rheology. The trend dis-
played by the multilayer folds toward the chevron
shape (Fig. 12), suggests the participation of non-linear
e�ects in the rock rheology, perhaps in¯uenced by the
layers mechanical interaction (cf. Johnson, 1970, pp.
297±298).

7. Discussion and conclusions

The present study is an attempt to provide a tool
for the analytical systematisation of the folded surfaces
geometry. To carry out this analysis folds have been

Fig. 12. Classi®cation of the natural fold pro®les shown in (a) and (b). (a) Microscopic siltstone layer embedded in slate (from ®g. 19.11 of

Ramsay and Huber, 1987); for the identi®cation of normal and overturned limbs, the reference line is assumed to be horizontal. (b) Folds devel-

oped in a multilayer of metasandstones and pelites (from ®g. 15.15 of Ramsay and Huber, 1987). (c) Classi®cation in the shape±amplitude dia-

gram.
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divided into alloclinal folds (interlimb angle>0) and
isoclinal folds (interlimb angle=0).

The limb pro®les of alloclinal folds are approxi-
mated by power functions [Eq. (1), Fig. 2] de®ned by
three parameters (x0, y0 and n ), which can be reduced
to two ( y0/x0 and n ) if the fold size is not considered.
y0/x0 characterises the fold amplitude and the expo-
nent n characterises the fold shape. Therefore, depend-
ing on the value of n we have: n<1, cuspate folds;
n � 1, chevron folds; n � 2=�pÿ 2�11:75, sinusoidal
folds; n � 2, parabolic folds; n41, box folds. Eq. (3)
is a more complicated choice to approximate alloclinal
folds.

The limb pro®les of isoclinal folds are approximated
by functions [Eqs. (4a) and (4b), Fig. 3] which rep-
resent a quarter of an ellipse and a vertical segment of
length C to describe the isoclinal part of the limb. In
this case, y0/x0 also characterises the fold amplitude
and the fold shape is de®ned by C/y0, which varies
from 0 (elliptic folds) to 1 (box folds).

Both alloclinal and isoclinal folds can be also ap-
proximated by superellipses (Gardner, 1965; Lisle,
1988) [Eq. (5)], although these functions are more com-
plicated than Eqs. (1), (4a) and (4b) and in most cases
give a worse approximation than Eq. (1) or Eq. (3) to
the alloclinal natural folds. On the other hand, super-
ellipses represent a complementary tool for the analysis
of isoclinal folds.

This analytical description of the folded surfaces
permits the construction of a shape vs amplitude ( y0/
x0) classi®cation diagram (Fig. 8), in which both allocl-
inal and isoclinal folds can be plotted. The shape is
represented on the x-axis by the parameters n (allo-
clinal folds) and C/y0 (isoclinal folds) which overlap
partially on this axis. Other parameters, such as m
[Eq. (3)] or p [Eq. (5)] can be also used on the x-axis
to describe the fold shape. All the parameters have
been related by the area beneath the folded surface
pro®le (Figs. 1 and 5), which has also been represented
on the x-axis as a normalised area (a � 2A=x0y0) (Fig.
8). Therefore, the proposed classi®cation method per-
mits approximation of a natural fold pro®le with sev-
eral functions, so that one of them can be selected
because of its ®t quality or mathematical simplicity for
the analysis of folding.

Unlike some previous classi®cations based on par-
ameters which allow a graphical but not analytical
description of folded surfaces (Fleuty, 1964; Ramsay,
1967; Twiss, 1988, amongst others), the classi®cations
based on the approximation of folded surfaces by
functions allow treatment of the folds as mathematical
entities for their description and analysis. Obviously,
the usefulness of a function depends on the degree of
®t to natural forms and the simplicity of the function.
In this respect, the functions used in this study permit
the ®tting of fold morphologies with a satisfactory pre-

cision using only two parameters, which in addition
allows a graphical classi®cation in a bidimensional dia-
gram.

An attempt to ®t fold geometry using a Fourier
analysis with only two coe�cients (b1 and b3) was car-
ried out by Hudleston (1973). Nevertheless, this ap-
proximation does not adequately ®t shapes such as
chevron, elliptical or box folds (cf. ®g. 15.12 of
Ramsay and Huber, 1987). As a consequence, the
analysis of Hudleston (1973) permits the labelling of
fold surfaces with two parameters and their graphical
classi®cation, but it does not allow the use of the
Fourier series for a functional description of folds. In
addition, the standard amplitudes de®ned by
Hudleston (1973) do not follow a regular pattern; for
instance, according to the aspect ratio ( y0/x0), ampli-
tude 5 is twice amplitude 4, but amplitude 2 is 3.5
times amplitude 1. On the other hand, an approxi-
mation of fold morphologies using a greater number
of Fourier coe�cients provides more accuracy (Stowe,
1988), but does not permit either a simple graphical
classi®cation or an adequate functional description of
folds, since the expressions involved are very compli-
cated.

The method proposed in this paper permits the con-
struction of visual charts to facilitate the classi®cation
of folded surfaces (Figs. 2 and 4). These charts can be
easily adapted to the needs of any particular region.
Nevertheless, we have not gained insight into this topic
since the method proposed to determine the par-
ameters involved in our classi®cation (x0, y0, n and C )
is simple and more accurate than visual methods.

The shape±amplitude diagram can be used in re-
gional studies as a simple method to systematise accu-
rately the geometry of large data sets of folded
surfaces. In addition, this classi®cation method permits
comparison of the geometry of natural fold pro®les
with that of experimental and theoretical folds, as a
tool to gain insight into the mechanics or mechanisms
of folding. The representation of fold pro®les by
simple functions can be also useful in the theoretical
analysis of the strain distribution in folded layers,
since some of these functions can be easily introduced
and transformed into the equations that describe the
strain state of a rock.
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